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OPTIMAL DESIGN OF MULTI-PURPOSE STRUCTURES*
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Abstract--Minimum-weight design of a sandwich member that has to serve as a tie in some circumstances and
as a beam in others is used to illustrate a general method of optimal design of sandwich structures that have to
meet several design requirements. The extension of the method to solid construction is discussed.

1. INTRODUCTION

A RECENT paper DJ presented a uniform method of treating a variety of problems of mini
mum-weight design of sandwich structures that have to meet a single design requirement.
Optimal elastic design for maximum stiffness, maximum fundamental frequency, or
maximum buckling load, and optimum plastic design for maximum safety were treated as
examples. In the present paper, the optimal elastic design ofa beam-tie for given transversal
and longitudinal stiffness is used to illustrate the extension of the method to two or more
design requirements and to solid structures.

Consider a straight sandwich member of the length 2l that has to serve as a tie in some
circumstances (Fig. la) and as a beam in others (Fig, lb). The core of the member is to have
constant height 2h and constant breadth b; the identical face sheets are to have constant
breadth b but variable thickness t(x), where x denotes distance measured along the member.
All direct stresses are to be carried by the face sheets. The specific axial stiffness at the cross
section x is therefore

S(x) = 2Ebt(x), (1.1)

where E is Young's modulus, while the specific bending stiffness is h2s(x).
The variation of the thickness t(x) is to be determined in such a manner that the member

experiences an elongation not exceeding the given value 2A when it is subjected to a longi
tudinalload L (Fig. la) and a maximum deflection not exceeding the given value (j when it is
subjected to a transverse load 2T at the center of the span (Fig. lb). Moreover, the face
sheets are to have minimum weight. On account of the symmetry of loading and support
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FIG. 1. Member acting as tie or beam.

with respect to the cross section x = 1(Fig. 1), we may set t(x) = t(21- x) and restrict the
discussion to the part between the cross sections x = 0 and x = I. Since t(x) is the only
variable in the expression (1.1) for s(x), minimizing the weight ofthe face sheets is equivalent
to minimizing the integral f~ s(x) dx.

2. TIE ACTION

When the member is acting as a tie, the longitudinal displacement u(x) satisfies the
following differential equation and boundary conditions

su' = L in 0 ~ x ~ I,

u(O) = 0, u(l) = A.

(2.1 )

(2.2)

If s(x) is given, the two boundary conditions (2.2) may be imposed only if Lin (2.1) is re
garded as an unknown constant. The principle of minimum potential energy then states
that the solution u(x) of the boundary value problem (2.1), (2.2) yields a smaller value of the
expression f~ SU,2 dx than any other kinematically admissible displacement field, that is,
any other continuous displacement field satisfying (2.2). Moreover, the minimum of
f~ SU,2 dx has the value LA.

Let s(x) be an alternative design that experiences the same elongation under the same
load, and denote its longitudinal displacement by u(x). Thus,

AL = f~ SU,2 dx = J: SU,2 dx. (2.3)

Since the displacement u(x) is kinematically admissible for the design s(x), the principle of
minimum potential energy applied to this design furnishes the inequality

(2.4)

It follows from (2.3) and (2.4) that

L(S-S)U,2 dx < O. (2.5)
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If the longitudinal displacement u(x) of the design sex) satisfies

(2.6)

where fl is a dimensionless constant, it follows from (2.5) that the design s(x) is lighter than
any other design sex) that experiences the same elongation under the same load.

If the member is only to act as a tie, its minimum-weight design is obtained by deter
mining fl from the differential equation (2.6) and the boundary conditions (2.2) and then
substituting u' from (2.6) into (2.1) and solving for s. Thus,

s = SL ~L. (2.7)
It

The optimal tie design has constant specific axial stiffness.

3. BEAM ACTION

(3.1)

(3.2)v{/) = J.0,v'(/)v(O) = 0,

When the member is acting as a beam under a central load 2T, the transverse displace
ment vex) satisfies the following differential equation and boundary conditions

h2sv" = -Tx in 0::; x::; I,

If s{x) is given, the three boundary conditions (3.2) may be imposed only if T in (3.1) is
regarded as an unknown constant. The principle of minimum potential energy then states
that the solution v{x) of the boundary value problem (3.1), (3.2) furnishes a smaller value of
the expression S~ sh2v"2 dx than any other kinematically admissible deflection, that is,
any other continuously differentiable deflection satisfying (3.2). Moreover, the minimum
value of S~ sh2

v"2 dx is TJ.
If sex) is an alternative design experiencing the same maximum deflection under the

same load, the principle of minimum potential energy may be used in a similar way as in
Section 2 to derive the inequality

f: (s-s)h 2
v"2 dx < O. (3.3)

This furnishes the optimality condition

(3.4)

where v is a dimensionless constant, when the member is to act only as a beam. The corre
sponding optimal design is found to be

Px
s = ST = 2h 2J T for 0 ::; x ::; l. (3.5)

4. TIE ACTION AND BEAM ACTION

When both kinds of action must be considered, the inequalities (2.5) and (3.3) may be
combined with positive multipliers to yield the optimality condition

Jl2 U'2 +v2 h2v"2 = 1,

where fl and v are dimensionless constants.

(4.1)
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The weight of the optimal design is proportional to f~ s dx. A simple expression for this
integral can be obtained by multiplying (4.1) by s, using (2.1) and (3.1), and integrating the
resulting equation between the limits x = 0 and x = I. Thus,

{S dx = /12L),+v 2Tb. (4.2)

If the transverse load 2T is sufficiently small, tie action alone may govern the optimal
design even though in principle both kinds of action have to be considered. In this case,
v = 0 in (4.1), and this optimality condition reduces to (2.6) yielding the design (2.7). Substi
tuting this expression for s into (3.1), integrating under the first two conditions (2.2), and
requiring that vel) must not exceed b, we obtain

(4.3)

and tie action alone governs the design when this inequality holds.
The possibility that beam action alone governs the optimal design may be explored in

a similar manner. It is found that this case cannot occur unless L = O. Accordingly, both
tie action and beam action influence the optimal design whenever T > To and L i= O. The
manner in which the specific axial stiffness s of the optimal design then depends on x is
found by multiplying (4.1) by S2 and using (2.1) and (3.1). Thus,

where

(4.4)

~ = wxll, W = vITI(hL). (4.5)

Note that ~ is a dimensionless distance measured along the member.
Substituting (4.4) into (2.1) and integrating under the first condition (2.2), we find

With

'1 = wAil,

use of (4.6) and the second condition (2.2) furnishes

/1 = '111(A sinh '1).

(4.6)

(4.7)

(4.8)

Similarly, substitution of (4.4) into (3.1) and use of the first two conditions (3.2) yields

13 T
v = 2h2w 3 L {2~(/12+w2)1/2_~(/12+e)1/2-/12 sinh-l(~//1)}. (4.9)

The third condition (3.2) now furnishes

sinh 2'1- 2'1

'1(cosh 2'1 - 1)
(4.10)

When this transcendental equation is solved for '1, the values of /1 and ware obtained from
(4.8) and (4.7). Finally, the optimal design is determined from (4.4).
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h/I = 1/20,

used in (4.10) yield

lJ/1 = 1/425, A/I = 1/1000, T/L = 1/50 (4.11 )

and

'7 = 1'00, Jl = 850, (JJ = 1000, (4.12)

(4.13)

(4.14)

As is readily verified from (4.2~ T /L = 0·020 > To/L = 0·0176. The weight of the face
sheets for the optimal design is 10% less than that for the design with constant thickness.
Since s = EA, where A is the combined cross-sectional area of the cover sheets, the stress
at induced by the load L in these sheets is given by

aL = ~ = E[8502+ (1000x/I)2r 1/2.
A

This stress decreases from E/850 at x = 0 to about E/1312 at x = I. On the other hand, the
absolute value of the bending stress aT induced by the transverse load 2T is found to be

aT = 0'4E1-[8502+(1000x/lfr 1/2.

It follows from (4.14) and (4.15) that

(850aL)2 + (2500aT)2 = E2.

(4.15)

(4.16)

This is the form assumed by the optimality condition (4.1) for the present example when the
unit extension u' and the curvature - v" are expressed in terms of the stresses aL and aT'

5. OTHER DESIGN REQUIREMENTS

The example discussed in Sections 2 through 4 involved two design requirements, which
were both concerned with stiffness. The extension of the method to 'several design require
ments involving other structural properties is immediate when suitable minimum principles
are known for these other properties. Suppose, for instance, that in some circumstances the
member considered above may also have to act as a column and that its Euler load is there
fore required to have at least the given value P. The deflection w(x) in elastic buckling satis
fies the following differential equation and boundary conditions:

w(O) = w'(l) = 0,

(5.1 )

(5.2)

and the Euler load may be found as the minimum value of a Rayleigh quotient. In analogy
to (2.3) and (2.4), we now have

fl sh2w"2 dx II sh2Wf/2 dx f' sh2w"2 dx
P = 0 = 0 < 0 (5 3)

I~ W'2 dx f W'2 dx I~ W'2 dx . .
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which yields
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(5.4)f (s-s)h 2
w"2 dx < O.

If the given Euler load is the only design requirement to be considered, (5.4) furnishes the
optimality condition

(5.5)

where p is a dimensionless constant. The corresponding optimal design has been discussed
in [I]. Ifall three design requirements are relevant, however, the optimality condition takes
the form

(5.6)

By taking one or two of the constants A, v, p in (5.6) as zero, we obtain the optimality
conditions for the cases in which only two or one of the three design requirements are
relevant.

It is worth noting that, as the first eigenfunction of the homogeneous boundary value
problem (5.1), (5.2), the function w(x) is only determined to within a constant factor. Accord
ingly, the factor p2 in (5.6) may be omitted whenever the required Euler load affects the
optimal design.

We shall not pursue this problem but discuss instead the application of the method to
structures that are not of sandwich type. As has been pointed out in [I], a realistic problem
of minimum-weight design involves restrictions on the size of the structural members.
Consider, for instance, the minimum-weight design of the beam in Fig. Ib for a given deflec
tion b under the central load 2T. To obtain a definite minimum-weight design without
invoking considerations oflateral stability, we must restrict the space available for the beam,
say to a rectangular prism of given height 2h and breadth b. The optimal design then is a
sandwich beam that fully uses this available space and places the material in direct stress
as close to the relevant faces of this space as is possible.

Occasionally, however, solid cross sections may have to be considered, because sand
wich construction is not practical. As has been shown in [2] for the special case of optimal
plastic design for given load-carrying capacity, the optimality condition for sandwich
construction is readily adapted to solid construction, but the modified condition ensures
a relative rather than absolute minimum of weight. Rather than discussing the modification
in general terms, we shall briefly indicate the manner in which the treatment of Section 2
through 4 must be changed if the member is to have a solid rectangular cross section of
constant breadth b and variable height 2H.

The specific axial and bending stiffnesses sand h2s in Sections 2 through 4 must then be
replaced by A = 2EbH and B = 2EbH3/3, respectively. Instead ofconsidering an arbitrary
alternative design s meeting the same requirements, we now consider a neighboring design
with the height 2(H + ~H), where ~H/H ~ 1. If higher powers of ~H are neglected, the
specific axial and bending stiffnesses of this design are A +2EM.H and B+2EMH2/1H.
It now follows from (2.5) and (3.3) that a design for which

(5.7)

is lighter than any neighboring design meeting the same requirements. Note that H in (5.7)
is a function of x, whereas h in (4.1) is a constant.
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The optimality condition (5.7) may be used in a similar manner as (4.1) to obtain an
expression for f~ 2EbH dx, which is proportional to the weight of the optimal design. Thus,

{2EbH dx = /12V.+3v2TJ. (5.8)

Note, however, that the values of /1 and v in (5.8) need not be the same as those in (4.2).
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A6cTpaKT-PaC'IeT Ha MHHHMyM BeCa CJlOMCTOro ::meMeHTa, pa60TalOl.l.lerO KaK Tlira Ha HeKoTophIX

paCCTOllHHlIX, H KaK 6anKa Ha ,i:\pyrHx, HCnOJlp3yeTcli JJ,1l1l HlllllOCTpaUHH o6l.l.lero MeTO,i:\a onTHMallhHoro

paC'IeTa CllOHCThlX KOHCTPYKUHH, KOTophle ,i:\OmKHhl y,i:\OBneTBopliTh HeKoTopblM Tpe60BaHHlIM pacqera.

npHBO.LIHTClI npHMeHeHHlI 3Toro MeTO.LIa K paCqeTY MOHonHTHhlX KOHCTpyKUHll.


